
☞ MicroCosmTM ☞

A ‘‘LUCASFILM UNIVERSE’’ PROPOSAL
for a new form of interactive entertainment

by
Chip Morningstar

Lucasfilm Ltd. Games Division
September 27, 1985

Introduction
MicroCosmTM will be a multi-player interactive simulation of an imaginary alternate world. Distrib-

uted processing techniques will enable a large number of people to become vicarious inhabitants of this
other reality. Their home computers, tapping into our network using low-cost modems and the household
telephone, will be their windows into it.

MicroCosm is, in some sense, a role-playing game. Each player takes the part of a character in the
vast, on-going drama. Running on each player’s home computer is a piece of software that acts as that
player’s window into the world. This program presents to the player the sights and sounds that his or her
character would be experiencing in the situations that the character encounters, together with interactive
controls to direct the character’s actions and movements within the simulation. The home computer con-
nects the character to the goings on in the rest of the world by means of data communications over the tele-
phone. This connection is routed through a central network host to the other players’ home computers and
to a central coordinating process that resides within the network host itself.

The Primal World
The primal world is a broad, featureless plain. We’ll call it the Plain with a capital ‘P’. Aside from

being a plain (plane), the topological details haven’t been decided yet. The Plain could be the surface of a
sphere, or of a torus. It could be an infinite plane extending in all directions, or it could be bounded in
some way. Such a boundary could be an impenetrable wall, an unsurvivable desert, or a sheer precipice
(the edge of the world!). Or, we could use some combination of these. For example, the side surface of an
infinite half-cylinder gives an axis along which you can travel forever going one way or reach the edge of
the world going the other, and an orthogonal axis along which you can circumnavigate the world and wind
up back where you started!

We said that the plain is featureless. This is to keep things simple for the network host since it has
many players that it has to keep track of at once. In fact, the plain isn’t entirely featureless. It has some
sort of texture to keep it from being completely blank. This might be a gridwork of some kind, or a
checkerboard patterǹ a la ballblazer, or some type of stochastic patterning such as intermittent streaking or
fractal dirt. The texture performs a couple of important jobs for the player. It provides something for the
player’s eyes to focus on for depth and motion cues and gives a frame of reference for judging direction and
orientation. This texturing information is not generated by the network host, however. The player’s home
computer simply knows the player’s position and orientation and can generate the texture locally. Different
players need not have the same image of the primal world -- there is no one ‘‘right’’ texture pattern. This
enables us to support different models of home computers without worrying overly much about keeping the
appearance of the world constant across them. For stylistic purposes, however, we should decide whether
we prefer a geometric pattern (e.g., a checkerboard) or a stochastic one (e.g., textured fractal dirt).

Lucasfilm Ltd. Proprietary Information - 1 - CONFIDENTIAL

MICROCOSM September 27, 1985 MicroCosm Document #1

Basic Concepts
Another thing that keeps the Plain from being a total blank are the things found there. There are

three important concepts to reckon with in this regard: objects, avatars and turf.

Objects are items that can be found in the world: independent, inanimate things, such as rocks, trees,
cars, stereos, light-bulbs, boxes, weapons, chairs, and so on. Objects all share a common set of basic prop-
erties (e.g., location). In addition, a few of them have special properties that are handled by special soft-
ware running on the network host. Objects have some important functions that will be discussed below.
Their main job, however, is simply to give the players something to manipulate.

Avatars are the players’ bodies in the fantasy. The players each have an avatar through which they
interact with the world, with the objects in it and with the other players’ avatars. Avatars are little individ-
ual homunculi that the players can control (the controls themselves are discussed below). Avatars have var-
ious traits in the fashion of characters in traditional fantasy role playing games (e.g., strength, height, ap-
pearance, etc.). Some of these traits are determined stochastically for the players by the system, and some
are personally chosen by the players themselves.

Turf refers to pieces of the Plain that ‘‘belong’’ to individual players. The notion of turf is what
makes the world work in the distributed environment. The idea is that a player can ‘‘own’’ a piece of the
Plain, in the sense that that piece is marked off in the network host’s central database as belonging to the
player. The interior of a player’s turf is simulated by software running on his own home computer, thus,
unlike the bland, open Plain, it can have as much graphic and topological complexity as the owner’s com-
puter can handle. Any other player whose avatar enters that particular region of the Plain is, in essence,
connecting the avatar-simulator in his own machine to the world-simulator in the first player’s machine.

Player Interaction
The player interacts with the world by controlling the actions of an avatar: a software homunculus

who is ‘‘really there’’. We are trying to project the player into the world. To do this effectively the range of
actions available to a player’s avatar should be broad. This poses a design problem since the available input
options for the various anticipated target machines are not broad at all: we have a two-dimensional pointing
device (either a mouse or a joystick) with a push-button on it and we have an ASCII keyboard. The single
pointing device does not provide enough degrees of freedom to control all the dimensions of behavior that
we wish to manipulate — motion, posture, orientation, arm and hand actions, and so on. The unfortunate
but inescapable conclusion to be drawn from this is that the player interface will have to be based on the
keyboard.

By our reckoning there are three qualitatively different kinds of inputs that the interface needs: 1)
commands to control the immediate actions of an avatar, 2) verbal communications between one player’s
avatar and another’s, and 3) commands to establish semi-autonomous behavior for an avatar. The latter is
for situations where quick reaction is required or where the player will be absent from his machine for a
brief period (e.g., to take a pee break) but wishes his avatar to continue functioning in the world during that
time. In a sense these three categories correspond to actions, words, and thoughts respectively.

One possible interface would use three ‘‘windows’’ on the screen. There would be one window for
each class of input. The interface would presumably provide a quick and easy means of shifting attention
from one window to another. Each window would recognize an input ‘‘language’’ most appropriate for the
sort of activity that takes place in it. For example, the actions window might recognize a set of quick, sin-
gle-keystroke commands that direct the actions of the avatar. The words window, on the other hand, would
simply accept typed text and transmit it to any other players whose avatars are within speaking distance.
The thoughts window might be something like a miniature programming language editor in which the
player could compose macro-like packages of action commands. A fourth window would also be required,
to provide output. This would be a graphic display showing the player what his avatar is seeing, and so
we’ll call it the sight window. It is important to note, however, that this interface design is really just specu-
lation to illustrate some basic needs. In all hopes the final design will be more sublime.

Lucasfilm Ltd. Proprietary Information - 2 - CONFIDENTIAL

MICROCOSM September 27, 1985 MicroCosm Document #1

System Design Goals
The system is divided physically into two parts: the centralized network host (which we’ll call the

host) on the one hand and all the various distributed home computers (which we’ll call the remotes or the
player systems) on the other. An obvious but important distinction between them is that there is only one
host, whereas there are many, many remotes. We assume that each remote corresponds to one player. The
system grows as players are added to it, but each new player brings a new CPU into the system. Thus, the
bottleneck is the host. To keep the host system CPU requirements from blowing up in our faces we must
minimize the host computational load as much as we can and make the remotes do most of the work. The
first rule of system design must therefore be Spread The Load.

It is theoretically possible to design a completely distributed system, so that the load is entirely on the
remotes and the host acts as a trivial communications switch, if indeed there is a host at all. However, be-
cause of the need to maintain the integrity of the overall world, it is not possible to reliably distribute cer-
tain functions and capabilities. This is because no individual player system can be considered entirely reli-
able nor can we afford to trust the players with certain powers. There is no way to guarantee that the soft-
ware running on any given remote is our own software unmodified. In particular there is no way to assure
that a remote won’t ‘‘cheat’’ on its owner’s behalf or introduce irregularities into the world. We have to be
sure that players will not be able to damage other players by dint of clever hackery. The only way to do this
is to build interlocks and handshaking protocols into the host that guarantee that the only person a player
can mess up is himself. We can’t prevent a player from destroying his own piece of the world, but then we
can’t keep him from other self-destructive acts either (such as smashing his computer, jumping off the
Golden Gate bridge, or failing to pay his system connect-time bill). The second rule of system design is
thus Keep It Secure.

The need to support a large number of remotes (so that we need to keep the load down) while at the
same time reserving certain activities to the host alone (which tends to push the load up) implies a third im-
portant rule of system design: Keep It Simple.

The Design
Each player has an account on the host system. Each account corresponds to a single imaginary in-

habitant of this imaginary world. If a player wishes to play multiple roles he must have multiple accounts,
which we will not try to prevent. We will sometimes speak of the player, his account, the name of his ac-
count, and the persona of the avatar he is controlling as if they were all the same thing. Even though Ko-
rzybski reminds us that this is not true, it will occasionally simplify discussion.

Things in the world have properties. Properties are any of a number of abstract attributes that an ob-
ject, avatar, or piece of the Plain may possess. Certain properties in particular are very important to the
function of the system.

One important property is ownership. Each object, avatar, and region of the Plain has an owner. The
owner is usually a player, though some things are owned by special system accounts. Ownership of a thing
in this world is a subtly different notion from ownership of a thing in the ‘‘real’’ world. In this world, gen-
erally speaking, only the owner of a thing is entitled to manipulate it in any way. There are exceptions to
this broad generalization, but they are not important just yet.

Another important property that all things have is location. Each thing has to be somewhere. Loca-
tion is important because of the notion of turf. Whether an object or an avatar is located on its owner’s turf,
on some other player’s turf, or on nobody’s turf (i.e., the system’s turf) together with the identity of its
owner determines what combination of computers is simulating that thing’s existence. Location also deter-
mines whether one thing may act upon another. However, the geometry and distance metric for the world,
like the topology, have not yet been determined.

Introduction To Distributed Processing — Movement
Avatars, being little simulated people, can move around on the Plain by walking (under the control of

the players that own them, of course). They may also move around in vehicles, which are a special kind of
object, but that is not important right now. An exchange between the host and the remotes handles move-
ment in the following manner:

Lucasfilm Ltd. Proprietary Information - 3 - CONFIDENTIAL

MICROCOSM September 27, 1985 MicroCosm Document #1

The avatar has a location (which is simply one of its properties as previously discussed) which is
known to both the host and to its owner’s remote. This location is in one of three kinds of places: some-
where on the player’s own turf, somewhere on some other player’s turf, or somewhere on the Plain that is
unowned. In all cases, to execute the motion the player’s computer simply informs the host of the move by
providing the location that has been moved to. The host checks to see if this is a legal move (e.g., that it
doesn’t move the avatar farther than it would be able to walk were it a real creature). If the move is not le-
gal, the host responds with an appropriate error message. Otherwise, the host updates its database to reflect
the avatar’s new location, and informs various ‘‘interested parties’’: remotes with a need to know about the
change in location. This includes the owner of the avatar, who gets a confirmation of his move, any other
players whose avatars are within ‘‘seeing distance’’ of either the new or the old locations, and possibly the
remote of the player on, onto, or off of whose turf the avatar has moved, if that is what has happened.
These remotes are then responsible for taking any necessary actions to inform their owners of the change in
state. If the move takes place on a player’s own turf, no further action is required. If the move takes place
on the open Plain, the host also informs the player of any objects, avatars, or turf that have come into sight
as a result of the move. If the move ends on some other player’s turf, that other player’s remote should (but
is not obligated to) respond with this information.

Because we cannot really trust any given remote, and because we are trying to keep the load off the
host, the concept of turf introduces modifications to the above procedure. As far as the host is concerned,
all locations on a given player’s turf are considered interchangeable. In other words, if an avatar is some-
where on its own turf, it can be anywhere on its own turf. If the remote simulating the turf tells the host of
a move to another location within the bounds of that turf, the host simply accepts it, no questions asked, no
matter how large a move it might be (the same applies for the location of objects, which we will discuss
shortly). This allows any amount of activity to take place on a player’s turf ‘‘off-line’’. The remote need
only inform the host of the end result. A consequence of this is that an avatar can ‘‘teleport’’ instanta-
neously from one part of its demesne to another. This is a bit weird, but that’s just the way the world
works.

Motion on another player’s turf obeys similar laws, except that it requires the active cooperation of
the foreign player’s remote. If the foreign player is not logged in to the host at the time, or if he merely
doesn’t want to interact with you, his turf is simply impassable. As long as activity is taking place entirely
on the other player’s turf, the host can act simply as a communications switcher between the two remotes.
It is up to the two remotes to decide whether or not they ‘‘believe’’ each other about what is happening. A
player can always take his avatar off someone else’s turf by informing the host of a move to adjacent terri-
tory. Without assistance from special objects (in transactions mediated by the host), a player cannot perma-
nently alter the state of another player’s avatar even if that avatar is on his own turf (and therefore ‘‘inside’’
his own computer).

Imagery
What a player sees as all this is happening is up to the player interface software on his remote. The

appearance of a player’s own turf can be anything that his machine cares to display. We will provide de-
fault environments that the players can then customize to their own liking. What the form of these environ-
ments will be and in precisely what form the player interface we build will display them has not yet been
determined. There are many possibilities. One such possibility is to show a player’s turf as a different pat-
tern on the Plain. This is the dullest alternative. More interesting displays might include three-bedroom
ranch houses with custom floorplans, abstract sculptures, sets from fifties movie musicals starring Fred As-
taire, tropical gardens, sleazy spaceport bars, or retail software chain outlets. The primary goal is to give
enough flexibility to allow the creative player to express himself while providing enough structure so that
the uncreative player can have an interesting turf without too much work.

Similarly, the player interface can provide imagery for the other player’s avatars, for the other
player’s turf, and for the various objects that abound. We will, however, adopt the convention of allowing
the owner of a thing to specify an appearance for it. Thus, when you meet another player’s avatar, the host
gives you images to display that the other player has provided. A thing’s appearance is another one of its
properties. This property can be dictated — usually — by the thing’s owner. The appearance of another
player’s turf can be provided by an ongoing real-time dialogue between the other player’s remote and your

Lucasfilm Ltd. Proprietary Information - 4 - CONFIDENTIAL

MICROCOSM September 27, 1985 MicroCosm Document #1

own. Alternatively, static images may be used. In particular, you can provide the host with images to rep-
resent your turf when you (or rather, your remote) are not around to represent it yourself. Thus, if you ap-
proach another player’s turf while that player is not logged in, you may be confronted with the scene of a
locked house, or brick wall, or a closed hatch in the ground, or a sign saying ‘‘BUZZ OFF!’’.

Objects And Actions
Just moving around on the Plain is not interesting enough. The players need something to do. The

way we deal with this is to provide the ability to do things and then let the players come up with things to
do for themselves. Essential to making this happen are objects. Objects have two major functions. First,
they provide physical and visual features for the landscape. Second, they provide active capabilities that
avatars alone do not possess, acting as tokens to mediate transactions between players that the player’s re-
motes by themselves cannot be trusted to handle securely.

Objects add physical and visual features to the landscape by their mere presence. Any time an avatar
comes within visual range of an object, the host informs the player’s remote. The object can then be used
in whatever visual display the player interface presents to the player. Objects can have the property of oc-
cupying space, and thereby render portions of the Plain impassable by obstruction.

Objects can act as tokens to mediate transactions between players. This is needed because of security
considerations: no remote can be absolutely trusted not to cheat. By adding a level of indirection to trans-
actions that necessitates an interaction with the host database, players can reduce the risks of any transac-
tion to those risks that are inherent in the rules of the game, rather than the much broader risks entailed in
trusting another person’s computer implicitly. In other words, the burden of trust is shifted from the other
player to the host. Presumably the host can be trusted, otherwise the world can’t work at all.

Objects give avatars the ability to do things that avatars alone cannot do. These objects act as tools to
manipulate the state of the world. For example, as explained above, a player cannot directly alter the state
of another player’s avatar in any permanent way, because he (or rather, his computer) cannot be trusted to
always do so within the rules. However, if an avatar possesses a weapon object, this changes. A weapon
object has a property that enables its carrier to forcibly subtract from the health property of other avatars.
Like movement, this action is initiated simply by having the remote inform the host that its player is exer-
cising the capability (along with the location of the target, of course). Again as with movement, the host
does the appropriate consistency checks (is the target within range? is the gun loaded?), makes the appro-
priate modifications to the central database, and informs all relevant players of what has happened. An-
other, less gruesome, example is a vehicle. A vehicle is an object that possesses two special properties: the
container property and the mobility property. An object with the container property can contain other ob-
jects (up to some limit of size or mass). An object with the mobility property can move around under the
control of an avatar it, just like an avatar can walk around on its own. An avatar operates a vehicle by load-
ing himself and any other desired objects into the vehicle (the loading itself being a form of movement
transaction) and then moving normally (except with an expanded range, speed and/or carrying capacity).

System Architecture
Figure 1 illustrates the underlying system architecture. As discussed above, the system is broken into

two parts: the host system and the player’s system (the remote). These two parts are connected by a com-
munications channel of some sort (presumably some combination of telephone and packet-switching net-
work linkup). Both ends have a Communications Channel Controller that handles the exchange of mes-
sages with the other system. The systems communicate using a message-based request protocol that is, as
yet, undefined.

The player’s system contains an Internal Modeler that maintains the player’s state in the world. The
Input Handler accepts commands and control information from the player himself and hands directives to
the Internal Modeler. The Internal Modeler attempts to execute these directives directly if it can, by simply
updating its notion of the internal state of the local world. If it must, the Modeler sends requests to the host
via the Communications Channel Controller. In any case, it passes appropriate commands to the Graphics,
Animation & Sound module, which updates the visual display appropriately. The Internal Modeler also has
access to a Database Cache which it uses to minimize the need for transactions with the host that simply
request static information (such as the imagery to display a particular object). Directives to the Internal

Lucasfilm Ltd. Proprietary Information - 5 - CONFIDENTIAL

MICROCOSM September 27, 1985 MicroCosm Document #1

Modeler can also arrive asynchronously from the host over the communications line. These are notifica-
tions of actions taken by other players that affect this player, such as movement into the player’s visual
range or onto the player’s turf. Some of these external requests merely require that the player’s system up-
date its world model, while others require a response to the host or to another player.

The host system contains a Message Switcher that routes requests and messages between one player
and another and between a player and the more active part of the host, the Transaction Monitor. The Trans-
action Monitor is responsible for serializing all the various requests arriving from the many remote systems.
It decomposes these requests into primitive database transactions which it then hands to the Database Con-
troller for execution. The Database Controller adjusts the database accordingly and passes a response back
to the Transaction Monitor which in turn responds to the requesting remote. The Database Controller also
detects changes in the state of the world that require notification of non-requesting players. Information
about these is sent to the Asynchronous Notifier which identifies the relevant parties and requests the Trans-
action Monitor to respond to them as well.

Gateways
Though the universe is intended to be a self-contained system that supports a variety of interesting

experiences in its own right, another obvious application is to allow it to become a bridge between the
player and other systems. The fantasy can provide a framework for an enjoyable and easy to use interface
to a range of different software. It is also potentially a powerful marketing device for the systems to which
the universe connects. We call these intersystem bridges gateways. Gateways may be of two sorts,
‘‘static’’ and ‘‘dynamic’’.

Static gateways simply allow the player to use MicroCosm to obtain other pieces of software that
might be available in the host system. The player’s avatar would pass through a magic doorway or go to a
simulated software store, whereupon a piece of non-MicroCosm software would be downloaded into the
his computer and run.

Dynamic gateways allow the player to use MicroCosm to connect to outside (i.e., non-MicroCosm)
activities taking place on the host. This could include other features that the host system might offer, such
as electronic mail or database services, as well as other multi-player network-based games. Some of these
outside processes, while not participating in the MicroCosm universe itself, could be designed to use it as
their primary (if not their only) means of access.

Conclusion
Obviously there are numerous technical specifics that still need to be worked out. In particular, the

definition of the set of objects and object properties found in the MicroCosm will have a dramatic effect on
the appearance, character and entertainment value of the world. However, we believe that the basic mecha-
nism described here is sound and that it will provide a most suitable infrastructure for a dynamic and excit-
ing simulation. We believe we can implement this system and build a very interesting world on top of it,
and we believe that we can do this in a reasonable amount of time and at a reasonable cost.

Lucasfilm Ltd. Proprietary Information - 6 - CONFIDENTIAL

